Đang tải...

Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong 46

Thảo luận trong 'Giáo trình cơ sở ngành' bắt đầu bởi hinhsu89, 31/5/15.

Thành viên đang xem bài viết (Users: 0, Guests: 0)

  1. hinhsu89
    Offline

    Tài xế O-H
    Expand Collapse

    Tham gia ngày:
    20/11/13
    Số km:
    280
    Được đổ xăng:
    152
    Mã lực:
    76
    Giới tính:
    Nam
    Xăng dự trữ:
    2,288 lít xăng
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    46
    4.2.5. Ảnh hưởng của hệ số khí sót
    Hình 4.10 trình bày ảnh hưởng của hệ số khí sót xb đến nồng độ CO trong khí xả
    động cơ Toyota. Khi tăng hệ số khí sót, nhiệt độ cháy giảm làm giảm tốc độ phản ứng
    phân giải CO2 thành CO do đó nồng độ CO trong sản phẩm cháy giảm. Vì vậy, hệ thống
    hồi lưu khí xả EGR lắp trên các động cơ hiện đại để khống chế nồng độ NOx đồng thời
    cũng góp phần làm giảm nồng độ CO ở chế độ tải thấp.
    4.3. Cơ chế hình thành hydrocarbure chưa cháy HC
    4.3.1. Sự phát sinh hydrocarbure chưa cháy trong khí xả động đốt trong
    Sự phát sinh hydrocarbure chưa cháy HC, hay nói một cách tổng quát hơn, sự hình
    thành các sản phẩm hữu cơ, là do quá trình cháy không hoàn toàn hoặc do một bộ phận
    hỗn hợp nằm ngoài khu vực lan tràn màng lửa. Điều này xảy ra do sự không đồng nhất của
    hỗn hợp hoặc do sự dập tắt màng lửa ở khu vực gần thành hay trong các không gian chết,
    nghĩa là ở khu vực có nhiệt độ thấp, khác với sự hình thành CO và NOx diễn ra trong pha
    đồng nhất ở những khu vực có nhiệt độ cao.
    Hình 4.11: Biến thiên nồng độ một số hydrocarbure
    theo góc quay trục khuỷu
    HC bao gồm các thành phần hydrocarbure rất khác biệt, có độc tính khác nhau đối
    với sức khỏe con người cũng như có tính phản ứng khác nhau trong quá trình biến đổi hóa
    học trong bầu khí quyển. Thông thường HC chứa một bộ phận lớn méthane. Thêm vào đó,
    chúng còn có các thành phần chứa oxygène có tính phản ứng cao hơn như aldehyde,
    cetone, phenol, alcool... Nếu thành phần chứa carbon chỉ chiếm vài phần trăm trong HC
    của động cơ đánh lửa cưỡng bức thì aldehyde có thể đạt đến 10% trong HC động cơ
    Diesel và trong số aldehyde này, formaldehyde chiếm tới 20% tổng số thành phần chứa
    carbon.
    Đánh lửa
    Mở soupape xả Đóng soupape xả
    C3H8
    C2H4
    CH4
    0 100 200 300 400
    1
    10
    102
    103
    104
    Độ góc quay trục khuỷu sau ĐCT
    Nồng độ trong
    khí xả
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    47
    Những chất còn lại trong hỗn hợp sau khi màng lửa đi qua không phải là nguồn
    phát sinh HC chính đo được trên đường xả của động cơ đốt trong. Hình 4.11 biểu diễn sự
    biến thiên nồng độ các thành phần hydrocarbure theo góc quay trục khuỷu đo được trên
    thành buồng cháy của động cơ một cylindre. Chúng ta thấy rằng, ngay khi màng lửa đi
    qua, nồng độ HC đo được thấp hơn HC có mặt trong khí xả. Vào cuối chu trình, nồng độ
    HC lại tăng lên. Thật vậy, khi màng lửa đã lan đến khu vực gần thành thì nó bị dập tắt và
    chính HC thoát ra từ các vùng không bị cháy đóng vai trò chủ yếu trong việc làm tăng
    nồng độ HC.
    4.3.2. Cơ chế tôi màng lửa
    Tôi màng lửa hay sự dập tắt màng lửa diễn ra khi nó tiếp xúc với thành buồng
    cháy. Quá trình tôi màng lửa có thể xảy ra trong những điều kiện khác nhau: màng lửa bị
    làm lạnh khi tiếp xúc với thành trong quá trình dịch chuyển hoặc màng lửa bị dập tắt trong
    những không gian nhỏ liên thông với buồng cháy, chẳng hạn như khe hở giữa piston và
    thành cylindre (hình 4.12).
    Hình 4.12: Sự hình thành HC do tôi màng lửa
    trên thành buồng cháy
    Khi màng lửa bị tôi, nó giải phóng một lớp mỏng hỗn hợp chưa cháy hay cháy
    không hoàn toàn trên các bề mặt tiếp xúc (culasse, piston, cylindre, soupape...) hay ở
    những không gian chết.
    Bề dày của vùng bị tôi phụ thuộc vào những yếu tố khác nhau: nhiệt độ và áp suất
    của hỗn hợp khí, tốc độ lan tràn màng lửa, hệ số dẫn nhiệt, nhiệt dung riêng, tình trạng bề
    mặt của thành buồng cháy, lớp muội than, nhiệt độ thành buồng cháy... Người ta có thể sử
    dụng những công thức thực nghiệm để tính kích thước bé nhất của không gian chết để
    màng lửa có thể đi qua mà không bị dập tắt.
    Quá trình tôi màng lửa diễn ra theo hai giai đoạn: trong giai đoạn đầu, màng lửa bị
    tắt khi nhiệt lượng hấp thụ vào thành buồng cháy cân bằng với nhiệt lượng do màng lửa
    tỏa ra. Vài giây sau khi tôi, do diễn ra sự khuếch tán hay sự oxy hóa nên nồng độ HC tại
    khu vực này nhỏ hơn nồng độ đo được khi tôi. Mặt khác, những hydrocarbure thoát ra
    trong quá trình oxy hóa ban đầu do màng lửa bị dập tắt có thể bị oxy hóa trong quá trình
    Sản phẩm
    cháy
    Hỗn hợp
    Vùng chưa cháy
    màng lửa
    bị kẹt
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    48
    giãn nở hay thải.
    Cuối cùng lớp dầu bôi trơn trên mặt gương cylindre có thể hấp thụ hydrocarbure,
    nhất là các hydrocarbure trước khi bén lửa và thải HC ra hỗn hợp cháy trong kì giãn nở.
    Quá trình hấp thụ và thải HC như vừa nêu đôi khi là nguồn phát sinh HC quan trọng trong
    khí xả động cơ đốt trong.
    4.4. Sự phát sinh HC trong quá trình cháy của động cơ
    đánh lửa cưỡng bức
    Khí xả động cơ xăng thường có chứa từ 1000 đến 3000ppmC, tương ứng với
    khoảng từ 1 đến 2,5% lượng nhiên liệu cung cấp cho động cơ. Như đã trình bày trên hình
    1.1, nồng độ HC tăng nhanh theo độ đậm đặc của hỗn hợp. Tuy nhiên, khi độ đậm đặc của
    hỗn hợp quá thấp, HC cũng tăng do sự bỏ lửa hay do sự cháy không hoàn toàn diễn ra ở
    một số chu trình công tác. Sự hình thành HC trong động cơ đánh lửa cưỡng bức có thể
    được giải thích theo các cơ chế sau đây (hình 4.13):
    - Sự tôi màng lửa khi tiếp xúc với thành tạo ra một lớp hỗn hợp không bị bén lửa
    trên mặt thành buồng cháy.
    - Hỗn hợp chứa trong các không gian chết không cháy được do màng lửa bị dập
    tắt.
    - Hơi nhiên liệu hấp thụ vào lớp dầu bôi trơn trên mặt gương cylindre trong giai
    đoạn nạp và nén và thải ra trong giai đoạn giãn nở và cháy.
    - Sự cháy không hoàn toàn diễn ra ở một số chu trình làm việc của động cơ (cháy
    cục bộ hay bỏ lửa) do sự thay đổi độ đậm đặc, thay đổi góc đánh lửa sớm hay hồi lưu khí
    xả, đặc biệt khi gia giảm tốc độ.
    Mặt khác, muội than trong buồng cháy cũng có thể gây ra sự gia tăng mức độ phát
    sinh ô nhiễm do sự thay đổi các cơ chế trên đây. Tất cả những quá trình này (trừ trường
    hợp bỏ lửa) làm gia tăng nồng độ HC chưa cháy ở gần thành buồng cháy chứ không phải
    trong toàn bộ thể tích buồng cháy. Trong quá trình thải có thể xuất hiện hai đỉnh cực đại
    của nồng độ HC: đỉnh thứ nhất tương ứng với đại bộ phận HC sinh ra trong quá trình cháy
    chính, đỉnh thứ hai xuất hiện vào cuối kì thải ở thời điểm những bộ phận HC cuối cùng
    thoát ra khỏi cylindre trong điều kiện lưu lượng khí xả đã giảm.
    Lớp dầu bôi
    trơn hấp thụ
    HC
    Lớp muội than
    hấp thụ HC
    Hỗn hợp chưa
    cháy bị nén
    vào không
    gian chết
    Màng lửa
    Hỗn hợp cháy
    không hoàn
    toàn là nguồn
    phát sinh HC
    HC trên thành
    cylindre bị
    kéo theo dòng
    khí xả
    Lớp muội than
    giải phóng HC
    NÉN
    CHÁY
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    49
    Hình 4.13: Sơ đồ các nguồn phát sinh HC
    4.4.1. Tôi màng lửa trên thành buồng cháy
    Bề dày của lớp bị tôi thay đổi từ 0,05 đến 0,4mm phụ thuộc vào chế độ tải của
    động cơ. Khi tải càng thấp thì lớp bị tôi càng dày. Sự hiện diện của aldehyde dạng HCHO
    hay CH3CHO trong lớp tôi chứng tỏ rằng khu vực lớp tôi là nơi diễn ra các phản ứng oxy
    hóa ở nhiệt độ thấp. Sau khi màng lửa bị dập tắt, những phần tử HC có mặt trong lớp tôi
    khuếch tán vào khối khí nhiệt độ cao trong buồng cháy và đại bộ phận bị oxy hóa.
    Trạng thái bề mặt của thành buồng cháy cũng ảnh hưởng đến mức độ phát sinh
    HC: nồng độ HC có thể giảm đi 14% trong trường hợp thành buồng cháy được đánh bóng
    so với trường hợp thành buồng cháy ở dạng đúc thô. Lớp muội than gây ảnh hưởng đến
    nồng độ HC tương tự như trường hợp thành buồng cháy nhám.
    4.4.2. Ảnh hưởng của các không gian chết
    Các không gian này được xem là nguyên nhân chủ yếu phát sinh HC. Các không
    gian chết quan trọng nhất là các khe hở giới hạn giữa piston, segment và cylindre (hình
    4.15). Những không gian chết khác bao gồm chân ren và không gian quanh cực trung tâm
    của bougie, không gian quanh nấm và đế soupape, không gian giới hạn giữa nắp cylindre,
    thân máy và đệm culasse. Ở thời điểm gia tăng áp suất trong quá trình nén, hỗn hợp nhiên
    liệu-không khí bị đẩy vào các không gian chết. Do tỉ số giữa diện tích bề mặt và thể tích
    của các không gian chết lớn nên lượng khí dồn vào đây được làm mát nhanh chóng. Trong
    giai đoạn cháy, áp suất tiếp tục tăng và một bộ phận hỗn hợp mới lại được nén vào không
    gian chết. Khi màng lửa lan đến các khu vực này, nó có thể lan tràn vào bên trong để đốt
    cháy hỗn hợp này hoặc nó bị tôi ngay trước khi vào trong không gian chết. Khả năng
    màng lửa bị tôi phụ thuộc vào dạng hình học của lối vào không gian chết, thành phần của
    hỗn hợp chưa cháy và trạng thái nhiệt động học của nó. Thực nghiệm cho thấy sự tôi màng
    lửa diễn ra khi khe hở giữa piston và cylindre nhỏ hơn 0,18mm. Sau khi màng lửa đến và
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    50
    bị tôi, khí cháy lại chui vào không gian chết cho đến khi áp suất bắt đầu giảm. Khi áp suất
    trong không gian chết trở nên lớn hơn áp suất trong cylindre, bộ phận khí chứa trong các
    không gian này quay trở ngược lại cylindre.
    Hình 4.15 thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm
    giữa piston, segment và thành cylindre. Nó bao gồm một loạt các thể tích nối liền nhau bởi
    những khe hẹp như khe hở segment, không gian giới hạn giữa hai segment liên tiếp...
    Dạng hình học của các không gian chết này thay đổi khi segment dịch chuyển trong rãnh
    để che kín mặt trên hay mặt dưới rãnh segment. Các không gian chết vừa nêu có thể chứa
    từ 5 đến 10% hỗn hợp trong cylindre và bộ phận hỗn hợp này không cháy được trong quá
    trình cháy chính. Trong giai đoạn giãn nở, khi quay ngược lại cylindre, một bộ phận HC
    chứa trong không gian chết bị oxy hóa, phần còn lại (hơn 50%) thoát ra ngoài theo khí xả.
    Thực nghiệm cho thấy hơn 80% HC chứa trong sản phẩm cháy do các không gian chết của
    nhóm piston-segment-cylindre gây ra; 13% lượng HC do không gian chết của đệm culasse
    2% do không gian chết của bougie. Giảm khoảng cách giữa segment thứ nhất so với đỉnh
    piston có thể làm giảm nồng độ HC từ 47 đến 74% so với giá trị bình thường tùy theo điều
    kiện làm việc của động cơ.
    Vị trí của nến đánh lửa cũng ảnh hưởng đến mức độ phát sinh HC; nếu nến đánh
    lửa đặt gần các không gian chết thì trong không gian đó có chứa một bộ phận sản phẩm
    cháy; ngược lại, nếu nến đánh lửa đặt xa thì không gian chết chứa chủ yếu hỗn hợp khí
    chưa cháy. Trong nhiều trường hợp, sự chênh lệch nồng độ HC có thể đạt đến 20%.
    Lọt khí carter là lượng khí lọt từ cylindre xuống carter trong quá trình nén và cháy
    do sự không kín khít của segment. Lọt khí carter cũng là nguồn phát sinh HC nếu nó được
    thải trực tiếp ra khí quyển. Ngày nay, ở hầu hết động cơ ô tô, lượng khí này được dẫn vào
    đường nạp để tăng tính kinh tế và giảm mức độ phát sinh HC. Để lượng hỗn hợp chưa
    cháy chứa trong các không gian chết không quay ngược lại buồng cháy, trong một số
    trường hợp người ta có thể giảm độ kín khít của segment để lượng khí này lọt xuống carter
    và bị đốt cháy khi quay vào lại cylindre theo đường nạp.
    Hình 4.15: Nguồn phát sinh HC trong động cơ đánh lửa cưỡng bức
    Không gian chết
    giữa đế và nấm
    soupape
    Không gian chết
    ở chân ren
    bougie
    Không gian chết
    ở đệm culasse
    Không gian chết
    giữa segment và
    rãnh segment
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    51
    Vì vậy, việc thiết kế hợp lí buồng cháy, lựa chọn hợp lí dạng piston, segment, đệm
    culasse để giảm các không gian chết, lựa chọn vị trí đặt bougie tốt sẽ làm giảm đáng kể
    nồng độ HC trong khí xả.
    4.4.3. Sự hấp thụ và giải phóng HC ở màng dầu bôi trơn
    Pha dầu bôi trơn vào nhiên liệu, như trường hợp động cơ 2 kì, sẽ làm gia tăng mức
    độ phát sinh HC. Khi pha thêm 5% dầu bôi trơn vào nhiên liệu thì nồng độ HC trong khí
    xả có thể tăng gấp đôi hay gấp ba so với trường hợp động cơ làm việc với nhiên nhiên
    không pha dầu bôi trơn.
    Cơ chế làm tăng HC khi pha dầu bôi trơn vào nhiên liệu có thể giải thích như sau.
    Trong giai đoạn nạp, màng dầu bôi trơn được tráng trên mặt gương cylindre ở trạng thái
    bão hòa hơi hydrocarbon ở áp suất nạp. Khi cháy hết nhiên liệu, sự giải phóng hơi nhiên
    liệu từ màng dầu bôi trơn vào khí cháy bắt đầu và đồng thời quá trình này tiếp tục trong kì
    giãn nở và thải. Trong quá trình đó, một bộ phận hơi này sẽ hòa trộn với khí cháy ở nhiệt
    độ cao và bị oxy hóa; một bộ phận khác hòa trộn với hỗn hợp khí cháy nhiệt độ thấp,
    không bị oxy hóa, góp phần làm tăng HC. Luợng HC này tăng theo độ hòa tan của nhiên
    liệu trong dầu bôi trơn.
    Sự hiện diện của muội than trong buồng cháy cũng ảnh hưởng đến sự phát sinh
    HC. Thực tế cho thấy HC có khuynh hướng gia tăng theo mức độ tiêu thụ dầu bôi trơn. Vì
    vậy, lựa chọn dạng segment dầu hợp lý sẽ làm giảm mức độ tiêu thụ dầu bôi trơn đồng
    thời làm giảm mức độ phát sinh HC.
    4.4.4. Ảnh hưởng của chất lượng quá trình cháy
    Sự dập tắt màng lửa khi nó lan đến gần thành là một trong những nguyên nhân làm
    gia tăng HC trong khí xả động cơ. Màng lửa có thể bị tắt khi áp suất và nhiệt độ giảm
    xuống nhanh. Hiện tượng này diễn ra ở chế độ không tải hay tải nhỏ và tốc độ thấp với
    thành phần khí sót cao. Ngay cả khi động cơ được điều chỉnh tốt ở chế độ làm việc bình
    thường, sự dập tắt màng lửa cũng diễn ra ở chế độ quá độ (gia tốc hay giảm tốc).
    4.4.5. Ảnh hưởng của lớp muội than
    Sự hình thành lớp muội than (oxyde chì đối với động cơ sử dụng nhiên liệu pha chì
    hay là lớp than do dầu bôi trơn bị cháy) xuất hiện trong buồng cháy khi ô tô chạy được
    khoảng vài ngàn cây số, cũng góp phần làm gia tăng HC.
    Cơ chế làm tăng HC do sự hiện diện của muội than khá phức tạp. Sự hấp thụ và
    giải phóng HC ở lớp muội than cũng giống như màng dầu. Mặt khác, nếu kích thước ban
    đầu của các không gian chết hẹp, lớp bồ hóng làm giảm lượng hỗn hợp khí chưa cháy
    chứa trong các không gian này vì vậy làm giảm HC. Ngược lại, nếu các không gian này
    nguyên thủy đủ lớn, sự bám bồ hóng làm giảm tiết diện lối vào, tăng khả năng dập tắt
    màng lửa do đó làm tăng mức độ phát sinh HC.
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    52
    4.4.6. Ảnh hưởng của sự oxy hóa HC trong kì giãn nở và thải
    Lượng hydrocarbure không tham gia vào quá trình cháy chính trong thực tế lớn
    hơn nhiều so với lượng hydrocarbure đo được trong khí xả động cơ. Thật vậy, sau khi
    thoát ra khỏi các không gian chết, nhiên liệu chưa cháy khuếch tán vào khối sản phẩm
    cháy ở nhiệt độ cao và tại đây chúng bị oxy hóa một cách nhanh chóng. Sự oxy hóa này
    càng thuận lợi khi lượng oxy trong sản vật cháy càng nhiều (hỗn hợp nghèo).
    Hydrocarbure ở thể khí bị oxy hóa khi nó tồn tại trong môi trường có nhiệt độ khoảng
    600°C (nhiệt độ thông thường của nấm soupape xả) ít nhất là 50ms. Lượng HC thải ra bao
    gồm nhiên liệu chưa cháy hết và các sản phẩm cháy không hoàn toàn. Mặt khác, quá trình
    oxy hóa cũng tiếp tục diễn ra trên đường xả làm giảm thêm nồng độ HC sau khi chúng
    thoát ra khỏi buồng cháy. Vì vậy những điều kiện vận hành của động cơ làm gia tăng nhiệt
    độ khí xả (hỗn hợp có độ đậm đặc xấp xỉ 1, động cơ làm việc với tốc độ cao, đánh lửa
    muộn, tỉ số nén cao...) và thời gian tồn tại của hỗn hợp trong buồng cháy dài (tải thấp) sẽ
    làm gia tăng tỉ lệ HC bị oxy hóa. Giảm góc đánh lửa sớm làm tăng nhiệt độ hỗn hợp khí ở
    cuối quá trình giãn nở tạo điều kiện thuận lợi cho việc oxy hóa HC trên đường thải. Về
    mặt kỹ thuật, để tăng khả năng oxy hóa HC trên đường thải cần làm giảm tổn thất nhiệt ở
    soupape và cổ góp bằng cách gia tăng tiết diện lưu thông và cách nhiệt đoạn đầu đường
    thải, chẳng hạn như phủ một lớp vật liệu gốm trên thành ống.
    4.5. Trường hợp động cơ Diesel
    4.5.1. Đặc điểm phát sinh HC trong quá trình cháy động cơ Diesel
    Do nguyên lí làm việc của động cơ Diesel, thời gian lưu lại của nhiên liệu trong
    buồng cháy ngắn hơn trong động cơ đánh lửa cưỡng bức nên thời gian dành cho việc hình
    thành sản phẩm cháy không hoàn toàn cũng rút ngắn làm giảm thành phần hydrocarbure
    cháy không hoàn toàn trong khí xả.
    Do nhiên liệu Diesel chứa hydrocarbure có điểm sôi cao, nghĩa là khối lượng phân
    tử cao, sự phân hủy nhiệt diễn ra ngay từ lúc phun nhiên liệu. Điều này là tăng tính phức
    tạp của thành phần hydrocarbure cháy không hoàn toàn trong khí xả.
    Quá trình cháy trong động cơ Diesel là một quá trình phức tạp, trong quá trình đó
    diễn ra đồng thời sự bay hơi nhiên liệu và hòa trộn nhiên liệu với không khí và sản phẩm
    cháy. Khi độ đậm đặc trung bình của hỗn hợp quá lớn hoặc quá bé đều làm giảm khả năng
    tự cháy và lan tràn màng lửa. Trong trường hợp đó nhiên liệu sẽ được tiêu thụ từng phần
    trong những phản ứng oxy hóa diễn ra chậm ở giai đoạn giãn nở sau khi hòa trộn thêm
    không khí.
    Chúng ta có thể chia ra hai khu vực đối với bộ phận nhiên liệu được phun vào
    buồng cháy trong giai đoạn cháy trễ: khu vực hỗn hợp quá nghèo do pha trộn với không
    khí quá nhanh và khu vực hỗn hợp quá giàu do pha trộn với không khí quá chậm. Trong
    trường hợp đó, chủ yếu là khu vực hỗn hợp quá nghèo diễn ra sự cháy không hoàn toàn
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    53
    còn khu vực hỗn hợp quá giàu sẽ tiếp tục cháy khi hòa trộn thêm không khí.
    Đối với bộ phận nhiên liệu phun sau giai đoạn cháy trễ, sự oxy hóa nhiên liệu hay
    các sản phẩm phân hủy nhiệt diễn ra nhanh chóng khi chúng dịch chuyển trong khối khí ở
    nhiệt độ cao. Tuy nhiên sự hòa trộn không đồng đều có thể làm cho hỗn hợp quá giàu cục
    bộ hay dẫn đến sự làm mát đột ngột làm tắt màng lửa, sinh ra các sản phẩm cháy không
    hoàn toàn trong khí xả.
    Mức độ phát sinh HC trong động cơ Diesel phụ thuộc nhiều vào điều kiện vận
    hành; ở chế độ không tải hay tải thấp, nồng độ HC cao hơn ở chế độ đầy tải. Thêm vào đó,
    khi thay đổi tải đột ngột có thể gây ra sự thay đổi mạnh các điều kiện cháy dẫn đến sự gia
    tăng HC do những chu trình bỏ lửa.
    Cuối cùng, khác với động cơ đánh lửa cưỡng bức, không gian chết trong động cơ
    Diesel không gây ảnh hưởng quan trọng đến nồng độ HC trong khí xả vì trong quá trình
    nén và giai đoạn đầu của quá trình cháy, các không gian chết chỉ chứa không khí và khí
    sót. Ảnh hưởng của lớp dầu bôi trơn trên mặt gương cylindre, ảnh hưởng của lớp muội
    than trên thành buồng cháy cũng như ảnh hưởng của sự tôi màng lửa đối với sự hình thành
    HC trong động cơ Diesel cũng không đáng kể so với trường hợp động cơ đánh lửa cưỡng
    bức.
    4.5.2. Phát sinh HC trong trường hợp hỗn hợp quá nghèo
    Sự phân bố không đồng đều nhiên liệu trong cylindre ngay lúc bắt đầu phun được
    giới thiệu trên hình 4.16. Trong dòng xoáy lốc, sự tự cháy diễn ra trong khu vực có độ
    đậm đặc hơi thấp hơn 1. Bộ phận nhiên liệu ở ngoài rìa tia nằm ngoài giới hạn dưới của sự
    tự bén lửa do đó chúng không thể tự cháy cũng không thể duy trì màng lửa. Khu vực đó
    chỉ có thể là vị trí sản sinh các phản ứng chậm dẫn đến sản phẩm cháy không hoàn toàn.
    Do đó trong vùng này có mặt nhiên liệu chưa cháy hết, những sản vật phân giải từ nhiên
    liệu, những sản phẩm oxy hóa cục bộ (CO, aldehyde và những oxyde khác) và một bộ
    phận của những sản phẩm này có mặt trong khí xả. Tầm quan trọng của những
    hydrocarbure chưa cháy từ những khu vực nghèo này phụ thuộc vào lượng nhiên liệu phun
    vào động cơ trong thời kì cháy trễ, phụ thuộc vào tỉ lệ không khí kéo theo vào tia trong
    giai đoạn này và những điều kiện lí hóa ảnh hưởng đến sự tự cháy trong cylindre.
    Vòi phun
    Không khí
    xoáy lốc
    Giới hạn tia
    nhiên liệu
    Điểm đánh
    lửa
    HC trong vùng
    hỗn hợp quá
    nghèo
    f >1
    f = 0
    f = fL
    f =1
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    54
    Hình 4.16: Phân bố độ đậm đặc trong tia phun Diesel
    Vì vậy nồng độ HC trong khí xả và độ dài của giai đoạn cháy trễ có quan hệ mật
    thiết với nhau, hay nói cách khác mức độ phát sinh HC có liên quan đến chỉ số cetane của
    nhiên liệu. Những thay đổi điều kiện vận hành của động cơ làm kéo dài thời kì cháy trễ sẽ
    làm gia tăng nồng độ HC.
    4.5.3. Phát sinh HC trong trường hợp hỗn hợp quá giàu
    Có hai nguyên nhân dẫn đến sự phát sinh HC do hỗn hợp quá giàu. Nguyên nhân
    thứ nhất do nhiên liệu rời khỏi vòi phun với tốc độ thấp và thời gian phun kéo dài. Nguồn
    phát sinh HC chính trong trường hợp này là không gian chết ở mũi vòi phun và sự phun
    rớt do sự đóng kim phun không dứt khoát. Nguyên nhân thứ hai là do sự thừa nhiên liệu
    trong buồng cháy do hỗn hợp quá đậm.
    Vào cuối giai đoạn phun, lỗ phun (không gian chết) ở mũi vòi phun chứa đầy nhiên
    liệu. Trong giai đoạn cháy và giãn nở, nhiên liệu được sấy nóng và một bộ phận bốc hơi
    thoát ra khỏi lỗ phun (ở pha lỏng và hơi) và đi vào cylindre với tốc độ thấp và hòa trộn
    chậm với không khí, do đó chúng không bị đốt cháy trong giai đoạn cháy chính. Ở động
    cơ phun trực tiếp, thời gian của giai đoạn cháy trễ bé, mức độ phát sinh HC tỉ lệ với thể
    tích không gian chết ở mũi vòi phun. Tuy nhiên, không phải toàn bộ thể tích nhiên liệu
    chứa trong không gian chết đều có mặt trong khí xả. Ví dụ 1mm3 không gian chết trong
    buồng cháy động cơ phát sinh khoảng 350ppmC trong khí xả, trong khi đó 1mm3 nhiên
    liệu cho 1660ppmC. Sự chênh lệch này là do một bộ phận hydrocarbure nặng tiếp tục lưu
    lại trong vòi phun và một bộ phận hydrocarbure nhẹ bị oxy hóa khi thoát ra khỏi không
    gian chết. Trong động cơ có buồng cháy dự bị cơ chế này cũng diễn ra tương tự nhưng với
    mức độ thấp hơn.
    Ở động cơ phun trực tiếp, hiện tượng nhả khói đen làm giới hạn khả năng tăng độ
    đậm đặc trung bình của hỗn hợp ở chế độ toàn tải. Ở chế độ tải thấp, tốc độ phun bé và
    lượng nhiên liệu phun vào nhỏ, do đó động lượng của tia phun bé làm giảm lượng không
    khí kéo theo vào tia nên độ đậm đặc cục bộ rất cao. Trong điều kiện quá độ khi gia tốc,
    hỗn hợp trong buồng cháy có thể rất đậm đặc. Trong trường hợp đó, dù tỉ lệ nhiên liệukhông khí tổng quát trong toàn buồng cháy thấp nhưng độ đậm đặc cục bộ rất cao trong
    giai đoạn giãn nở và thải. Khi độ đậm đặc cục bộ vượt quá 0,9 thì nồng độ HC sẽ gia tăng
    đột ngột. Ảnh hưởng tương tự như vậy cũng diễn ra trong động cơ có buồng cháy dự bị.
    Tuy nhiên cơ chế này chỉ gây ảnh hưởng đến nồng độ HC khi gia tốc và nó gây ảnh hưởng
    đến nồng độ HC ít hơn khi hỗn hợp nghèo ở chế độ không tải hay tải thấp.
    4.5.4. Phát sinh HC do tôi ngọn lửa và hỗn hợp không tự bốc cháy
    Như động cơ đánh lửa cưỡng bức, sự tôi ngọn lửa diễn ra gần thành và đó chính là
    nguồn phát sinh HC. Hiện tượng này phụ thuộc đặc biệt vào khu vực va chạm giữa tia
    Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong
    55
    nhiên liệu và thành buồng cháy. Sự bỏ lửa dẫn đến sự gia tăng mạnh nồng độ HC hiếm khi
    xảy ra đối với động cơ làm việc bình thường. Nó chỉ diễn ra khi động cơ có tỉ số nén thấp
    và phun trễ. Mặt khác, sự bỏ lửa cũng xảy ra khi khởi động động cơ Diesel ở trạng thái
    nguội với sự hình thành khói trắng (chủ yếu là do những hạt nhiên liệu không cháy tạo
    thành).
    4.6. Trường hợp động cơ hai kì đánh lửa cưỡng bức
    Mặc dù người ta đã nghiên cứu sử dụng nhiều kết cấu của hệ thống quét thải nhằm
    hạn chế sự hòa trộn giữa khí cháy và khí chưa cháy, đặc biệt đối với động cơ hai kỳ dùng
    bộ chế hòa khí, nhưng vẫn có một bộ phận khí nạp mới thoát ra đường xả làm tăng nồng
    độ HC, đồng thời làm giảm công suất và tăng suất tiêu hao nhiên liệu của động cơ. Mặt
    khác, khi làm việc ở tải cục bộ, loại động cơ này dễ bỏ lửa làm tăng HC.
    Hiện nay có nhiều giải pháp nhằm khắc phục nhược điểm trên của động cơ 2 kỳ
    trong đó có hai giải pháp hữu hiệu nhất. Giải pháp thứ nhất là tạo hỗn hợp không đồng đều
    trong không gian buồng cháy sao cho chỉ có bộ phận hỗn hợp nghèo bị thất thoát ra đường
    thải. Giải pháp thứ hai là phun nhiên liệu vào buồng cháy một khi cửa thải đã đóng.
    Trong trường hợp phun nhiên liệu, năng lượng cần thiết để dẫn động bơm phun
    nhiên liệu thường được trích ra từ động cơ do đó công suất động cơ bị giảm đi một ít. Mặt
    khác, so với động cơ 4 kì, thời gian dành cho quá trình nén rất ngắn (sau khi đóng cửa nạp
    và cửa thải) do đó phải phun nhiên liệu thật nhanh với tốc độ phun lớn khiến một bộ phận
    nhiên liệu bám lên thành cylindre làm tăng mức độ phát sinh HC trong khí xả.
    Một giải pháp có nhiều triển vọng hơn là phun nhiên liệu bằng khí nén trích từ
    buồng cháy động cơ. Lượng không khí này được nạp vào buồng nén trong kì nạp và nén
    của động cơ và được nén mạnh trong giai đoạn cháy và giãn nở.
     

Chia sẻ trang này